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Glassy behavior in systems with Kac-type step-function interaction
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We study a system with a weak, long-ranged repulsive Kac-type step-function interaction within the frame-
work of a replicated effectivew4 theory. The occurrence of extensive configurational entropy or an exponen-
tially large number of metastable minima in the free energy~characteristic of a glassy state!, is demonstrated.
The underlying mechanism of mesoscopic patterning and defect organizations is discussed.
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Competing interactions on different length scales caus
many cases the emergence of an intermediate length s
where new structures and inhomogeneities are formed.
amples are stripe formation in doped Mott insulators@1#,
bubbles of electronic states of high Landau levels in quan
Hall systems @2#, domains in magnetic multilayer com
pounds @3#, and mesoscopic structures formed in se
assembly systems@4#. These systems typically exhibit
multi-time-scale dynamics similar to the relaxation found
glasses. The glassy behavior and the diverging relaxa
time are believed to be the result of the competition betw
the interactions with different characteristic length sca
@5,6#; for example the macroscopic phase separation is f
trated by competing long-range interactions@5,7#. Glassiness
then arises spontaneously in the absence of extrinsic diso
due to self-generated randomness.

While there are various different scenarios for glassy
havior such as the kinetic constraint where the diverging
laxation time is purely of dynamic origin and occurs in
system with trivial equilibrium properties, the central them
of this work is based upon the random first-order transit
@8#, where glassiness is attributed to an exponentially la
number of metastable states, originally emphasized by Ka
mann@9#. The fact that configurational entropy is needed
slow motions in glasses was first described by Gibbs
DiMarzio @10#. Below a crossover temperatureTA , an en-
ergy landscape dominated, ‘‘viscous’’ long time relaxati
sets in due to an exponentially large number of metasta
states,N, i.e., the configurational entropy,Sc5 ln N, be-
comes extensive. This crossover temperatureTA is often as-
sociated with the mode-coupling temperature at which
relaxation time or the viscosity exhibits a power law dive
genceuT2TAu2g, within mode-coupling theory@11#. Activa-
tion processes, which are neglected in mode-coupling th
ries, soften the sharp transition into a crossover where
T,TA free-energy barriers and thus transition rates betw
the metastable states remain finite. The configurational
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tropy decreases with decreasing temperature, and beco
negative forT,TK . A continuous~random first-order! tran-
sition, the ‘‘ideal’’ glass transition, occurs atTK to avoidSc
,0. The Kauzmann temperatureTK is the temperature a
which the genuine thermodynamic glass transition is
pected, whereas the experimentally observed glass trans
occurs atTg.TK which depends on the cooling rate.

In Ref. @6#, it was shown quite generally within the frame
work of a replicatedw4 theory that the competition betwee
short range forces~favoring phase separation! and long-
range Coulomb interaction leads to an exponentially la
number of metastable states and self-generated glassi
The large phase space of fluctuations, which can lead
fluctuation induced first-order transition@12#, was shown to,
alternatively, drive the system into an amorphous state,
stripe glass.

In this Rapid Communication we explore the extent
which explicit competition or frustration is necessary
cause a glassy state and what kind of interactions sup
such a state. A particularly interesting potential is the Ka
type step potential

V~x!5a2gDf~gx!, ~1!

with f(y)51 for y<1 and zero otherwise. Here,g controls
the amplitude and range of the potential, whereas the inv
length a characterizes the integral strength*dDxV(x)}a2.
In the van der Waals limit,g→0 after the thermodynamic
limit, it is known that a system of particles interactin
through a potential given by Eq.~1! can be described exactl
by a mean-field theory@13#, wherea is related to the long-
range force of the van der Waals theory. In case of a s
potential, mean-field theory predicts a spinodal. This mo
system is of particular interest since it has been used to s
the glass formation and crystallization processes@14#. Using
Monte Carlo simulations, the appearance of many metast
amorphous ‘‘clump’’ configurations was demonstrated
Ref. @14#. However, it is difficult, if not impossible, to enu
merate the metastable states and to determine the depen
of the number of local minima, as a function of the syste
size, in a Monte Carlo study. We find that an analysis o
replicatedw4 theory along the lines of Ref.@6# is useful as an
alternative strategy.
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In this Rapid Communication we demonstrate that
Kac-type step-function interaction, Eq.~1!, indeed causes th
emergence of an exponentially large number of metast
states and aself-generated glassy state. In the limit of small
but finite g, no frustration between different interaction
needs to be introduced explicitly, which is different from t
model studied in Ref.@5,6#. We demonstrate that glassine
is due to multiple configurations of self-arrested defects,
occurs, similar to Ref.@6#, once the correlation length of th
system is slightly larger than the length scale of mesosc
cally modulated structures. The configurational entropy,
~4! below, behaves forD53 and atT5TA as Sc /V}g3,
where V is the volume of the system. A model of glas
behavior with the Kac-type long-ranged interaction, calle
van der Waals glass, was introduced and extensively de
oped, including a study of its dynamics, in Ref.@15#, where
it is argued that proximity to the mean-field spinodal pr
vides a long correlation length in addition to the Kac pote
tial range, and thus leads to frustration and nonzero confi
rational entropy. This will be verified here using the repli
approach.

We start from the model Hamiltonian

H5
1

2E d3xH @“w~x!#21r 0w2~x!1
u

2
w4~x!J

1E d3xE d3x8w~x!w~x8!V~x2x8!, ~2!

with V(x) of Eq. ~1!. The usual equilibrium free energyF
52T ln Z is an outcome of an unconditional average ov
the entire configuration space. It does not permit the de
tion of local minima of the free energy in the configuratio
space. In Ref.@16#, a replica approach was proposed to ov
come this limitation and allows us to probe the number
metastable states. In the absence of an exact solution o
w4-theory, a number of approximations have been es
lished. The self-consistent screening approximation~SCSA!
@17# for anN-componentw4 theory is correct up to a term o
order 1/N. Here, we adopt the SCSA of a replicatedw4

theory as used in Ref.@6# and takeN51 at the end. Recently
it was shown that this approximation reproduces very w
the generic features of the complete solution of the rep
mean-field problem@18#. The free energyF(m) of the rep-
licated Hamiltonian is given in terms of the regular corre
tion function G(q) and the correlation functionF(q)
[^wa(q)wb(2q)& between the fields in different replica
which corresponds to the Edwards-Anderson parameter
naling a glassy state. Here,a, b are the replica indices andm
is the number of replicas.

Within the SCSA, the relevant part of the free ener
F(m) is

F~m!52
T

m
~ tr ln G 211tr ln D 21!, ~3!

which determines the configurational entropySc
5(1/T)(dF(m)/dm)um51. Here, G[(G2F)I1FE is the
correlation function matrix withIab5dab and Eab51. The
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symbol tr in Eq.~3! includes the trace of the replica spa
and the momentum integration. The matrixD is related toG
via D 215(uT)21I1P, where P5(G^ G2F ^ F)I1(F
^ F)E is the generalized polarization matrix. The symbol^

denotes a convolution in Fourier space. The replica
Schwinger-Dyson equation can be written asG 215G0

21I
1S, whereS is the self-energy matrix and

G0~q!5
1

q21r 1Ṽ~q!
,

with the renormalized massr 5r 01*@d3q/(2p)3#G. Ṽ(q)
is the Fourier transform ofV(x). Within the SCSA the self-
energy has diagonal elementsSG52G^ DG and off-
diagonal elementsSF52F ^ DF in replica space, whereDG
and DF being, respectively, the diagonal and off-diagon
elements ofD. These equations form a closed set of se
consistent equations which enable us to solve forG and F,
and then determine the configurational entropy via

Sc5E dDqH sF F

GG2sF F ^ F

~uT!211G^ G
G J . ~4!

Here,s@x#[2x2 ln(12x).
In the limit of small and largeg it is possible to make

analytic progress. For largeg the short-range part, i.e., th
gradient term in Eq.~2!, dominates, andV(r ) can be ne-
glected. No glassy state with finite Edwards-Anderson
rameter results in this ordinaryw4 theory. The situation is
more interesting in the limit of smallg, i.e., for long-range
interactions. UsingṼ(q)5a2c(q/g) with c(z)54p@sin(z)
2zcos(z)#/z3, it follows for g!a that now the gradient term
in Eq. ~2! can be neglected compared to the Kac-type int
action. The long wavelength behavior is dominated by
long-range interaction. The short-range interaction becom
effectively local and has no characteristic length scale a
more. The correlations are dominated by wave vectors wh
minimize Ṽ(q). Sincec(z) is minimal ~and negative! for z
5z055.76, the dominating peak in the correlation functi
occurs atq05z0g, independent ofa:

G0~q!'
Z

j221~ uqu2q0!2
. ~5!

Here Z5(2/c)(g/a)2 is the weight of the peak with width
characterized by j225Z(r 1ca2), where c5c9(z0)
'0.361. This expansion aroundq5q0 elucidates the corre
spondence with the analysis performed in Ref.@6#. A calcu-
lation along the lines of Ref.@6# determinesTA for large u
(@q0

3j22) as the temperature where the ratio of the corre
tion lengthj and the modulation lengthl 052p/q0 becomes
of order unity~larger than 2 within the SCSA!. Inserting Eq.
~5! into Eq.~4! yields then for the configurational entropy,
TA , Sc(TA)5VCg3, with C'6.8131023. In the limit of
smallu a glassy state occurs as well but the criterion forl 0q0
becomes more complex. The longer ranged the interact
1-2
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the smaller is the number of metastable states per unit
ume. As expected, glassiness disappears in the van der W
limit g→0 @19#.

While we are not able to solve the set of self-consist
equations for the bare form of the step-function poten
~which has arbitrary large harmonics in its Fourier transfo
complicating the numerics!, we found a numerical solution
after adjusting the potential to the one depicted by the s
line in Fig. 1 for r 050.1494.0, g50.03, u51.79, anda
51 ~we use units where the upper cutoff of the moment
integration is unity!. The strong short-ranged repulsion is
result of the large momentum cutoff in the numerics. In F
2 we show the temperature dependence ofSc . The behavior
of Sc matches the entropy crisis scenario of the random fi
order transition theory@8#. The mode-coupling temperatur
TA and the Kauzmann temperatureTK can be unambiguously
identified. Furthermore, we show in Fig. 3 the correlati
functions G(q) and F(q). In addition to the pronounced
peak atq0 we can also see higher order structures in
instantaneous correlation functionG(q), which become
strongly suppressed in the long time correlation funct
F(q). A novel length scale, thedefect wandering lengthl,
that determines the suppression of the long time correlat
for largeq emerges as a result of the off-diagonal self-ene
in replica space@6# SF(q0)52(2/l)2.

FIG. 1. Potential used in the numerical calculations~solid line!
and the step-function potential withg50.03 ~dashed line!.

FIG. 2. Configurational entropySc as function of temperature
for r 050.1494,g50.03, u51.79, anda51.
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Our analysis enables us to analyze what kind of inter
tion, V(x) of Eq. ~1!, can cause a glassy state. It is sufficie
if the Fourier transformṼ(q) of the potential possesses
minimum atq0, with Ṽ(q0),0. Then the system exhibits
spinodal even for a purely repulsive interaction (r 0.0), in
distinction to the model discussed in Ref.@5,6#. We recall
that proximity to a mean-field spinodal provides a largej in
addition to the Kac potential range, and thus self-consiste
leads to frustration. One can in fact ‘‘map’’ the van der Waa
glass @15# into the stripe glass@6#. Note, in the case of a
Kac-type Gaussian potential@20# with f(x)5exp(2x2), the
Fourier transform of this potential is monotonic. A modul
tion lengthl 0 at the mesoscale does not occur and no gla
behavior is anticipated in the absence of the short-ran
gradient term. This agrees with the conclusion reached
Ref. @14#. In this case, both, the gradient term in the Ham
tonian andr 0,0 are necessary in order to find glassiness
mesoscales.

From these considerations it seems to follow that, for
model, Eq. ~1!, the free-energy landscape of metasta
states which causes glassiness originates from configura
of mesoscopic defects. The origin of the glassiness has b
discussed in detail in Ref.@6# in terms of the defect wander
ing lengthl which depends onj and l 0. In the parameter
region where the system acquires modulation atl 0, the me-
soscopically ordered state constitutes the global minimum
the free energyF, or the ground state. With respect to th
ordered array of mesoscopic structures, excitations suc
dislocations are termed defects. The defect-wandering len
l is the distance on which a defect can move freely in
lattice of the mesoscopic structure. Whenl,2l 0/3, the de-
fects are pinned by the underlying lattice of the mesosco
structure@6#. A distribution of such pinned defects becomes
local minimum ofF. The organizations of defects should b
responsible for the exponentially large number of metasta
statesN5expSc , whereSc is extensive. This picture is con
sistent with the findings of Ref.@14# that the fcc arrangemen
of the clumps has lower free energy than those of all froz
amorphous clump configurations. In this case, the fcc clu
configuration is an ordered array of mesoscopic spher

FIG. 3. Instantaneous correlation functionG(q) ~solid line! and
long time correlation functionF(q) ~dashed line! for g50.03, r 0

50.1494,u51.79, anda51. The arrow points at the position o
the first secondary peak.
1-3
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structures. The amorphous clump phases are the orga
tions of defects about the ordered lattice of these mesos
spherical structures.

Another interesting question is whether glassiness is
possible with a microscopicl 0 of the order of the hard core
radius of the atoms. The defect-pinning picture for the me
stable configurations described above is intuitively clear
consistent with the three-dimensional models wherel 0 is me-
soscopic. Nothing in the argument forbids its application t
circumstance wherel 0 is the microscopic lattice constant. T
study this in more detail, we have investigated a 1Dw4

model on a lattice in which the frozen configurations
kinks are expected to give a large number of metasta
states. This occurs in the parameter regime where the
tinuous variablew can be mapped to the 1D Ising model wi
nearest-neighbor interaction, which has been shown to h
Sc50 @21#. An estimate of the number of low-lying meta
stable states reflectsalgebraic, instead of exponential siz
dependence, leading to lim

V→`
Sc /V50. While the effect of

dimensionality is not clear, an interesting scenario is t
exponentially large number of metastable states occur on
pinned mesoscopic structures, not in trapped microscopic
fect states.

In summary, we have demonstrated the emergence
glassiness~in the sense of a finite configurational entropy! in
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a system interacting through a Kac-type repulsive step
tential. In the absence of a short-ranged interaction glassi
can occur ifṼ(q) possesses at least one minimum. The c
cept of a defect-wandering length is useful for understand
the source of the exponentially large number of metasta
states. The picture of the origin of the configurational e
tropy as the organizations of defects in ordered arrays
mesoscopic structures is consistent with the numerical fi
ings in Ref. @14#. The glassiness we have found is due
configurations of mesoscopic defects. Based on the ana
of a 1D Ising model, it is speculated that only pinning
defects about the mesoscopic pattern can give rise to e
nentially large numbers of metastable states.
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